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We present a new algorithm for concurrent access to array-based priority queue heaps. Deletions
proceed top-down as they do in a previous algorithm due to Rao and Kumar [6], but insertions
proceed bottom-up, and consecutive insertions use a bit-reversal technique to scatter accesses across
the fringe of the tree, to reduce contention. Because insertions do not have to traverse the entire
height of the tree (as they do in previous work), as many as O(M) operations can proceed in
parallel, rather than O(log M) on a heap of size M. Ezperimental results on a Silicon Graphics
Challenge multiprocessor demonstrate good overall performance for the new algorithm on small
heaps, and significant performance improvements over known alternatives on large heaps with mized
insertion/deletion workloads.
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void insert(int priority, int data, heap_t *heap)
{
LOCK (heap->lock);
i = ++heap->size; ip = &heap->item[il;
ip->pri = priority; ip->dat = data;
while(i>1)
{
parent = i>>1; pp = &heap->item[parent];
if (ip->pri < pp->pri) SWAP(ip,pp); /* swap items i and parent */
else break;
i = parent; ip = pp;
}
UELOCK (heap->lock) ;
}

int delete(int *priority, int *data, heap_t *heap)
{
LOCK(heap->lock) ;
if(heap->size < 1){ UNLOCK(heap->lock); return O; }
i=1; ip = gheap->item[1];
spriority = ip->pri; =*data = ip->dat;
1p = &heap->item[heap->size--];
ip->pri = lp->pri; ip->dat = lp->dat;
while(i <= heap->size>>1){
min = MIN_CHILD(i); /# index of child with higher priority */
mp = &heap->item[min];
if(ip->pri > mp->pri) SWAP(ip,mp); /* swap items i and min */
else break;

i = min; ip = mp;
}
UNLOCK (heap->lock) ;
return 1;

Figure 1: Single-lock heap operations.

1 Introduction

The heap data structure is widely used as a priority queue [2]. The basic operations on a priority
queue are insert and delete. Insert inserts a new item in the queue and delete removes and returns
the highest priority (lowest numbered) item from the queue. A heap is a binary tree with the
property that the value of the key at any node is less than the value of the keys at its children
(if they exist). An array representation of a heap is the most space efficient: the root of the heap
occupies location 1 and the left and right children of the node at location 7 occupy the locations 2:
and 2i + 1, respectively. No items exist in level [ of the tree unless level [ — 1 is completely full.

Many applications (e.g. heuristic search algorithms, graph search, and discrete event simula- -
tion [4, 5]) on shared memory multiprocessors use shared priority queues to schedule sub-tasks. In
these applications, items can be simultaneously inserted and deleted from the heap by any of the
participating processes. The simplest way to ensure the consistency of the heap is to serialize the
updates by putting them in critical sections protected by a mutual exclusion lock (see figure 1 for
C-like pseudo-code for insert and delete operations). This approach limits concurrent operations
on the heap to one. Since updates to the heap typically modify only a small fraction of the nodes,
more concurrency should be achievable by allowing processes to access the heap concurrently as
long as they do not interact with each other.

Biswas and Browne [1] proposed a scheme that allows many insertions and deletions to pro-
ceed concurrently. Their scheme relies on the presence of maintenance processes that dequeue




sub-operations from a FIFO work queue. Sub-operations are placed on the work queue by the
processes performing insert and delete operations. The work queue is used to avoid deadlock due
to insertions and deletions proceeding in opposite directions in the tree. The need for a work queue
and maintenance processes causes this scheme to incur substantial overhead. Rao and Kumar [6]
present another scheme that avoids deadlock by using top-down insertions, where an inserted item
has to traverse a path through the whole height of the heap. Jones [3] presents a concurrent prior-
ity queue algorithm using skew heaps. He notes that top-down insertions in array-based heaps are
inefficient, while bottom-up insertions would cause deadlock if they collide with top-down deletions
without using extra server processes.

This paper presents a new concurrent priority queue heap algorithm that addresses the problems
encountered in previous research. On large heaps the algorithm achieves significant performance
improvements over both the serialized single-lock algorithm and the algorithm of Rao and Kumar,
for various insertion/deletion workloads. For small heaps it still performs well, but not as well as
the single-lock algorithm. The new algorithm allows concurrent insertions and deletions in opposite
directions, without risking deadlock and without the need for special server processes. It also uses
a bit-reversal technique to scatter accesses across the fringe of the tree to reduce contention.

Section 2 presents the new algorithm and an analysis of its performance advantages. Section 3
presents experimental results on a Silicon Graphics Challenge multiprocessor. It compares the new
algorithm to the single-lock algorithm and to the algorithm of Rao and Kumar, demonstrating
performance improvements for a variety of workloads. Section 4 summarizes our conclusions.

2 The Algorithm

The new algorithm uses mutual exclusion locks on each node in the heap and on a variable that
holds the number of items in the heap. Also, each node has a tag that indicates whether it is empty,
valid, or in transient state due to an update to the heap by process pid. The tags serve to allow
(bottom-up) insertions and (top-down) deletions to proceed in opposite directions without the need
for a work queue or extra service processes [1]. The tags in the new algorithm allow a process to
efficiently identify the item it is moving up or down the heap even if the item has been swapped
by another process. For example, when a (top-down) delete operation swaps an item that is being
inserted (bottom-up), the tags prevent the unlocked inserted item from being wrongly swapped by
another parallel insert operation. Another advantage of the new algorithm is that unlike top-down
insertions, bottom-up insertions do not necessarily have to traverse the whole height of the heap
to complete the operation, thus reducing traversal overhead, and contention on topmost nodes.

In some definitions of heaps [2], all nodes in the last level of the heap to the left of the last
item have to be non-empty. This is not required by priority queue semantics, or heap logarithmic
complexity. In the new algorithm, we relax this restriction. Consecutive insertions traverse different
sub-trees by using a bit reversal technique similar to that of an FFT computation [2]. For example,
in the 3rd level of a heap (nodes 8-15, if the root is node 1), eight consecutive insertions would start
from the nodes 8, 12, 10, 14, 9, 13, 11, and 15, respectively. Notice that for any two consecutive
insertions, the two paths from each of the bottom level nodes to the root of the heap have no common
nodes other than the root, thus reducing the contention on node locks. Similarly, consecutive
deletions from the heap would follow the same pattern but in reverse order.

Since insertions in the new algorithm do not have to traverse the whole height of the tree, and
since consecutive insertions have almost disjoint paths to the root, O(M) heap operations can make
progress concurrently. The bound on concurrency in Rao and Kumar’s algorithm is O(log M).




void concurrent_insert(int priority, int data, heap_t *heap)
{
LOCK(heap->lock);
i = BIT_REVERSE(++heap->size); ip = &heap->item[i];
LOCK(ip~>lock);
UBLOCK (heap->lock) ;
ip->pri = priority; ip->dat = data;
if(i == 1){ ip->tag = PRESENT; i=0;1}
else ip->tag = pid;
UNLOCK(ip->lock);
while(i > 1){
parent = i>>1; pp = &heap->item[parent];
LOCK(pp->lock);
ip = gheap->item[il;
if(pp->tag == PRESENT) has_p_lck = 1;
else if(pp->tag == EMPTY){ UNLOCK(pp->lock); i = 0; break; }
else if(pp->tag == pid){ UBLOCK(pp->lock); i = parent; continue; }
else{ UNLOCK(pp->lock); has_p_lck = 0; }
LOCK(ip->lock);
if(ip->tag == pid){
if(has_p_lck){
if(ip->pri < pp->pri){
SWAP(pp,ip);
if(parent == 1){ pp->tag = PRESEET; next = 0; } else next = parent;
}else{ ip->tag = PRESENET; next = 0; }
}else next = i;
}else next = parent;
if(has_p_1lck) UELOCK(pp->lock);
UBLOCK (ip->lock);
i = next;
}
if(i == 1){
ip = &heap->item[i];
LOCK (ip->lock);
if(ip->tag == pid) ip->tag = PRESERT;
UBLOCK (ip->lock) ;

Figure 2: Concurrent insertion.

Figures 2 and 3 present C-like pseudo-code for the insertion and deletion parts of the new
algorithm, respectively. Initially, all locks are free, all node tags are set to EMPTY, and the number
of elements in the heap is zero.

Instead of computing the bit-reverse (O(n) time, where n is the number of bits to be reversed)
for each operation on the heap, we use a bit-reverse counter with amortized time O(1) for long
sequences of increments only or decrements only. However alternating increments and decrements
may result in O(n) complexity. Figure 4 shows the bit-reversal routines.

3 Experimental Results

3.1 Methodology

We used a 12-processor Silicon Graphics Challenge multiprocessor to compare the performance of
the new algorithm, the single-lock algorithm, and Rao and Kumar’s algorithm. We tried the latter
both with and without adding our bit-reversal technique.
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int concurrent_delete(int *priority, int *data, heap_t *heap)
{
LOCK (heap->lock) ;
if(heap->size < 1){ UNLOCK(heap->lock); return O; }
last = BIT_REVERSE(heap->size--); lastp = &heap->item[i];
LOCK(lastp->lock);
UBLOCK (heap->lock) ;
captive_pri = lastp->pri; captive_dat = lastp->dat; lastp->tag = EMPTY;
UELOCK (lastp->lock);
i =1; ip = Zheap->item[1];
LOCK(ip->lock);
if(ip->tag == EMPTY){ UNLOCK(ip->lock); #priority = captive_pri; =*data = captive_dat; return 1; }
#priority = ip->pri; *data = ip->dat;
ip->pri = captive_pri; ip->dat = captive_dat; ip->tag = PRESENT;
left = i<<1;
while(left < MAX_SIZE){
right = left+l; 1lp = &heap->item[left]; rp = &heap->itemfright];
LOCK (1p->lock) ;
if(1p->tag == EMPTY){ UNLOCK(lp->lock); break; }
else{ min = left; mp = 1p; }
if(right < MAX_SIZE){
LOCK (rp->lock) ;
np = rp;
if(rp->tag != EMPTY)
if(rp->pri < 1p—>pri){ min = right; mp = rp; np = 1lp; }
UNLOCK (np~>lock) ;
¥
if(mp->pri < ip->pri) SWAP(ip,mp);
else{ UNLOCK(mp->lock); break; }
URLOCK (ip->lock);
i = min; ip = mp; left = i<<1;
}
UBLOCK (ip->lock);
return 1;

}

Figure 3: Concurrent deletion.

/* initially *counter = *reverse = 0O, #*high_bit = don’t_care */

void increment(int *counter, int *reverse, int *high_bit)

{
if(*counter++ == 0){ *reverse = #high_bit = 1; return; }
bit = *high_bit>>1;
while(bit){ *reverse “= bit; if(*reverse & bit) break; bit >>=1; }
if(!bit) *reverse = *high_bit <<= 1;
¥
void decrement(int *counter, int *reverse, int *high_bit)
{
*counter--;
bit = *high_bit>>1;
while(bit){ *reverse "= bit; if(!(*reverse & bit)) break; bit >>=1; }
if(!'bit){ *reverse = *counter; *high_bit >>= 1; }
}

Figure 4: A bit-reverse counter.




For mutual exclusion we used test-and-test-and-set locks with backoff using the MIPS R4000
load-linked and store-conditional instructions. On small-scale multiprocessors like the Chal-
lenge, these locks have low overhead compared to other more scalable locks.

To evaluate the performance of the algorithms under different levels of contention, we varied
the number of processes in our experiments. Each process runs on a dedicated processor in a tight
loop where it repeatedly updates a shared heap. Thus, in our experiments the number of processors
corresponds to the level of contention. We believe these results to be comparable to what would
be achieved with a much larger number of processes, each of which was doing significant real work
between queue operations. In all experiments, processors perform equal workloads.

We studied the performance with workloads of insertions only, deletions only, and various
mixed insert/delete distributions. We also varied the initial number of full levels in the heap before
starting time measurements to identify performance differences with different heap sizes. For the
mixed insert/delete experiments we used workloads of 200,000 heap operations. Experiments with
smaller workloads are too fast to time. In these experiments, the heap size remains almost constant
as the number of insertions and deletions are equal and processors alternate performing insertions
and deletions. We also ran experiments with 100,000 insertions only, and with 100,000 deletions
only on a 17-level-full heap. Inserted values were chosen randomly and uniformly on the domain of
32-bit integers.

All the C programs for the different algorithms were compiled with the highest optimization
level, and were carefully hand-optimized. For the multiple-lock algorithms we changed the data
layout to reduce the effect of false sharing, but we did not apply this optimization to the single lock
algorithm as it does not need it and it would only produce unnecessary overhead. Therefore, in our
experiments we were using the best version of each algorithm, thus guaranteeing fair evaluation. The
programs are accessible by anonymous ftp to ftp.cs.rochester.edu/pub/packages/concurrent. heap,
or by contacting any of the authors.

3.2 Results

Figures 5 and 6 show the time taken to perform 100,000 insertions and deletions, respectively, on
a heap with 17 full levels. Figure 7 shows the time taken to perform 10,000 sets of 10 insertions
and 10 deletions on an empty heap. Figures 8 and 9 show the time taken to perform 100,000
insert/delete pairs on a 7-level-full heap and a 17-level-full heap, respectively.

In the case of insertions only without deletions (figure 5), the single-lock and the new algorithm
have better performance because insertions do not have to traverse the whole height of the tree (as
they do in Rao and Kumar’s algorithm), and most inserted items settle in the two bottom-most
levels of the heap. In effect, insert operations for the single-lock algorithm in this case are fast
enough that greater potential for concurrency in the new multi-lock algorithm does not matter
much.

In the case of deletions only without insertions (figure 6), most deletions have to traverse the
whole height of the tree. Therefore, the delete operation traverses many nodes, and the multi-lock
algorithms outperform the single-lock algorithm. Because deletions in the new algorithm proceed
top-down in essentially the same manner as in Rao and Kumar’s algorithm, the two algorithms
display very similar performance.

In the case of alternating insertions and deletions on an initially empty heap (figure 7), the
average height of the heap ranges from 3 to 5. The single-lock algorithm outperforms the other
algorithms because it has low overhead and there is relatively little opportunity for the multi-lock
algorithms to exploit concurrency on very small heaps. Comparing the new algorithm with that of
Rao and Kumar, we find that the new algorithm yields better performance because it suffers less
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Figure 5: Performance results for 100,000 insertions.
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Figure 7: Performance results for 10,000 sets of 10 insertions and 10 deletions on an empty heap.
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Figure 8: Performance results for 100,000 insert/delete pairs on a 7-level-full heap.
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Figure 9: Performance results for 100,000 insert/delete pairs on a 17-level-full heap.

from contention on the topmost nodes of the heap. Note that after several insert/delete cycles, the
items remaining in the heap tend to be of very low priority, so new insertions have to traverse most
of the path to the root in the new algorithm. This means that the performance advantage of the
new algorithm over that of Rao and Kumar in this case is more because of reduced contention for
the topmost nodes of the tree (due to opposite directions for insertion and deletion) than because
of shorter traversals.

In the case of alternating insertions and deletions on a 7-level-full heap (figure 8), the height of
the heap remains almost constant. The single-lock algorithm continues to outperform the others
because of its low overhead, but the difference between it and the new algorithm narrows as the
level of contention increases, since 7 levels provide the new algorithm with reasonable opportunities
for concurrency. Rao and Kumar’s algorithm suffers from high contention on the topmost nodes.

In the case of alternating insertions and deletions on a 17-level-full heap (figure 8), the large
height of the heap makes concurrency, rather than locking overhead, the dominant factor in per-
formance. The multi-lock algorithms consequently show improved performance over the single-lock
algorithm. As in the case of the empty and 7-level-full heaps, most new insertions tend to have
higher priorities than the items already in the heap, and thus eventually settle near the top of the
heap. In spite of this, the new algorithm outperforms that of Rao and Kumar because of reduced
contention on the topmost nodes.

4 Conclusions

We have presented a new algorithm that uses multiple mutual exclusion locks to allow consistent
concurrent access to array-based priority queue heaps. The new algorithm avoids deadlock among




concurrent accesses without forcing insertions to proceed top-down [6] or introducing a work queue
and extra processes [1]. Bottom-up insertions reduce contention for the topmost nodes of the heap,
and avoid the need for a full-height traversal in many cases. The new algorithm also uses bit-reversal
to increase concurrency among consecutive insertions, allowing them to follow mostly-disjoint paths.

We compared the performance of the new algorithm, the single-lock algorithm, and Rao and
Kumar’s top-down insertion algorithm [6] on a 12-node SGI Challenge multiprocessor. The results
show that the new algorithm provides reasonable performance on small heaps, and significantly
superior performance on large heaps under high levels of contention.
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